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Abstract

Reinforcement learning is a powerful model of animal learn-
ing in brief, controlled experimental conditions, but does not
readily explain the development of behavior over an animal’s
whole lifetime. In this paper, we describe a framework to
address this shortcoming by introducing the single-life rein-
forcement learning setting to cognitive science. We construct
an agent with two learning systems: an extrinsic learner that
learns within a single lifetime, and an intrinsic learner that
learns across lifetimes, equipping the agent with intrinsic mo-
tivation. We show that this model outperforms heuristic bench-
marks and recapitulates a transition from exploratory to habit-
driven behavior, while allowing the agent to learn an inter-
pretable value function. We formulate a precise definition of
intrinsic motivation and discuss the philosophical implications
of using reinforcement learning as a model of behavior in the
real world.

Keywords: Reinforcement learning, lifelong learning, intrin-
sic motivation, meta-learning

Introduction

Reinforcement learning (RL), in which an agent learns to op-
timize expected rewards by interacting with an environment,
is a powerful model of biological learning (Niv, 2009). In
cognitive science, it traces its origins to theories of oper-
ant conditioning and associative learning (Rescorla, 1971),
and has predicted neural correlates of learning in neuro-
science (Schultz, 1998). In recent decades, it has become
a dominant paradigm in machine learning (Sutton & Barto,
2018), achieving milestones such as reaching superhuman
performance in Go (Silver et al., 2016), and improving the
training of large language models by providing a way to di-
rectly incorporate human feedback (Ouyang et al., 2022).
However, reinforcement learning struggles with the so-
called sparse rewards problem, in which the signal provided2

by the environment is insufficient to drive learning of com-
plex actions. This is a problem both in machine learning and
in the modeling of biological learning. One approach to solv-
ing this problem is to introduce intrinsic motivation factors
such as count-based intrinsic motivation in machine learn-
ing (Bellemare et al., 2016) or novelty- and stochasticity-
seeking behavior in humans (Modirshanechi, Xu, Lin, Her-
zog, & Gerstner, 2022; Xu, Modirshanechi, Lehmann, Ger-
stner, & Herzog, 2021). These proposed intrinsic motivation
signals are usually hand-crafted heuristics that can drive ex-
ploratory behavior, skill- and competency-building, or even
maintain homeostasis (Oudeyer & Kaplan, 2009).

Hand-crafting intrinsic motivation and intrinsic rewards in
machine learning, however, can lead to unpredictable agent
behavior (Clark & Amodei, 2016). Similarly, hand-crafting
intrinsic motivation features in cognitive science requires nu-
merous assumptions on the part of the experimenter, and
will be limited in scope to specific sources and formulations
of intrinsic motivation, meaning that it will neglect factors
and interactions driving behavior, in particular over longer
timescales and open-ended tasks that cannot be as closely
controlled.

Biological agents have no acess to hand-crafted intrinsic
motivation and reward functions, and must construct their
own sense of what is rewarding (Juechems & Summerfield,
2019). Recently, there has been great interest in viewing
this process as occurring through meta-reinforcement learn-
ing across timescales (Nussenbaum & Hartley, 2024). In this
paper, we introduce deep RL networks that address this task,
but focus specifically on meta-learning intrinsic motivation
while continuing to use an environmentally-determined re-
ward function. This method allows us to focus specifically
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on the role of meta-learning in determining our algorithms of
exploration and action. In this setting, we recapitulate fea-
tures of changes in intrinsic motivation over the course of
development, including a shifting balance from exploration
to exploitation, that allow the algorithm to outperform hand-
crafted heuristics. In non-stationary tasks, we further show
that this form of intrinsic motivation is adaptive to different
statistics in the environment. By allowing intrinsic motiva-
tion to change freely over time, this method can potentially
simulate changes in human patterns of learning and explo-
ration that are impacted by human experiences during devel-
opment (Frankenhuis & Gopnik, 2023).

This method is compatible with other approaches to ad-
dress shortcomings of hand-crafted models, such as meta-
learning a time-dependent policy or an intrinsic reward func-
tion (Singh, Lewis, & Barto, 2009; Zheng, Oh, & Singh,
2018). In theory, they could be combined into a joint model.
However, meta-learning intrinsic motivation has several key
advantages over meta-learning an intrinsic reward function or
directly meta-learning the policy: First, it allows learning a
value function that represents the true extrinsic rewards in the
environment. Second, it makes explicit in which directions
agents are driven by extrinsic reward, and when the motiva-
tion is intrinsic. Finally, by reducing the amount of assump-
tions and designer choices needed in training learning agents
on a task de novo, it potentially facilitates the use of neural
networks to study the time course of learning.

Methods
Single-life reinforcement learning

We model the learning of extrinsic rewards and adaptation of
intrinsic motivation as taking place over a single life. The
defining characteristic of the single-life reinforcement learn-
ing (SLRL) setting is that the agent is given a single “life” (i.e.
one long episode) over which to accumulate rewards (Chen,
Sharma, Levine, & Finn, 2022).

The agent interacts with a Markov decision process
(MDP; (Puterman, 1990) Mg = (S, 4, P, R, po,Y) sampled
from M. Its goal is to maximize G'ife = ):ﬁ':OY R (s¢)
over the course of a single episode, which may be in-
finitely long but normally ends with a terminal state
in the MDP. The agent’s trajectory over the episode is
called the lifetime trajectory T and follows the distribution
Pn(Tl60) = P(SO)HtT;ol 7o,y (ae|s:) p(res1,Si41]8:,ar), where
0, = f(6,-1,y) are the policy parameters of the extrinsic
learner.

Optimal intrinsic motivation

In analogy to previous work on intrinsic rewards (Singh et
al., 2009; Zheng, Oh, Hessel, Xu, & Kroiss, 2020), we de-
fine the Optimal Intrinsic Motivation Problem as learning the
intrinsic motivation that maximizes the expected value of the
lifetime return G''® obtained by the combined learning agent
within a lifetime.

We address this problem by meta-learning across lifetimes.
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Figure 1: Architecture of the combined intrinsic-extrinsic
learning system. Both the intrinsic and the extrinsic systems
output a policy on every step that is combined as a weighted
average based on intrinsic motivation strength o € [0, 1]. Both
the intrinsic and extrinsic learner are trained using rewards,
but only the extrinsic learner receives reward information as
observations during the episode.

Meta-learning occurs over a set My of Markov decision
processes (MDPs) from which we sample according to a dis-
tribution pgr : M — R, at each new lifetime (Wang et al.,
2016; Duan et al , 2016). The objective function of this meta-
learning timescale is

J= E90~®~,M1ife"‘l7<w[evcl) [ETNPW(ﬂeO) {GlifeH M

where © is an initial policy distribution of the extrinsic
learner, y are the parameters of the generative model for in-
trinsic motivation, and 7 is a single-life history of the com-
bined agent.

Concretely, we model three different variations of the ten-
armed bandit testbed from Sutton and Barto (2018). In these
stateless tasks, the agent has the option of choosing from ten
different actions with different payout magnitudes on each
step. Episodes are 100 steps long. The first task is the clas-
sic stationary ten-armed bandit testbed, in which the payout
magnitude of each action is sampled from a standard nor-
mal distribution A’(0,1) at the beginning of each episode.
The second is a hardcoded version of the ten-armed bandit
testbed, in which the payout magnitude of the first possible
action is of a higher payout magnitude A10, 1. The final task
is a non-stationary version, in which the payout magnitudes
are resampled from A0, 1 during the episode. A parameter
called volatility, which is fixed within each episode but varies
between them, gives the probability of resampling after every
timestep. We train on volatility levels in the intervals [0, 1]
and [5, ], and evaluate on levels across the entire range. In
this formulation, Hc,, are all problems in the above sets, and
Miire are the instances sampled uniformly from these sets.
For tasks 1 and 2, the observation consists solely of the ac-
tion selected by the agent on the previous turn; for task 3,
in these simulations, the observation additionally includes re-
ward feedback from the sampled arm to alert the agent to a
change.
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A reward-learning, adaptive-intrinsic-motivation
agent

We build an agent that is composed of two components, an ex-
trinsic learner that begins every episode without prior knowl-
edge about the environment and a meta-learning intrinsic mo-
tivation learner. We thus operationalize intrinsic motivation
as motivation which is not based on rewards information,
even if it is trained by extrinsic rewards across episodes.

Learning extrinsic rewards The extrinsic learner has at
its objective to maximize the episodic return G'i®. Its values
or parameters are updated in an online manner after every
timestep or at least several times within an episode. In our
experiments, the extrinsic learner is implemented as a tabular
Q-learning system (Watkins & Dayan, 1992) initialized to O
with learning rate 1. For stationary tasks, 1= 1/N(a), where
N(a) is the number of times an action @ was chosen. With
this value, the Q-values track the means of the bandits across
observations. For non-stationary tasks, we set a non-decaying
learning rate 1 = 0.1.

Learning adaptive intrinsic motivation The intrinsic
learner has the objective given by Equation 1. Its parameters
are updated after exposure to a batch of different lifetimes to
ensure that it learns parameters that are useful across differ-
ent MDPs drawn from Me,o. We construct this agent as a
meta-reinforcement learner trained as in Wang et al. (2016).
Except in the task where we test for responses to volatility,
the intrinsic learner only receives action history information
as input (and not reward information).

We implement the intrinsic learner as a network com-
posed of a Long Short-Term Memory (LSTM; Hochreiter &
Schmidhuber, 1997) layer of 64 units followed by a softmax
output layer for action selection. We use the REINFORCE
algorithm (Williams, 1992) to train the network. In all simu-
lations, we train the network for 500,000 episodes, with an-
nealed entropy regularization to O over the course of the first
250,000 episodes.

Combining the two systems Both learners output policies
for every timestep. These are combined into one global policy
based on a mixture weight o € [0, 1], such that Tygen = (1 —
Q) X Texr + O X Tine (see Figure 1).

We intentionally set a high value of o = 0.5 in order to
better study the impact of the intrinsic-motivation system on
the agent’s overall performance.

Results

Learned intrinsic motivation in the ten-armed
bandit testbed

First, we model performance on the standard ten-armed ban-
dit testbed from Sutton and Barto (2018) over episodes of
100 steps. We train the meta-learner over 500,000 episodes.
Across five model instantiations, after training, the model
reaches an average performance of 87.7 = 25.9 (mean =+
SEM over models, see Figure 2A).

We first compare the performance of our system with other
models of intrinsic motivation. A 0.5-greedy system (that has
the same strength of intrinsic motivation) has an average re-
ward of 59.9 + 3.7 (mean &= SEM over 100 test episodes) on
the same system. Upper Confidence Bound (UCB; Auer,
Cesa-Bianchi, & Fischer, 2002), again matching the same
weighting as we have between extrinsic and intrinsic moti-
vation, has a performance of 72.9 £ 3.8 (mean = SEM over
100 test episodes). This illustrates that the learned intrin-
sic motivation in the system significantly outperforms hand-
crafted heuristics (one-sample t-test comparing average per-
formance for each of the different model instantiations with
average performance e-greedy: t(4)=17.08, p=3.4e-5, UCB:
t(4)=17.06, p=3.5e-5).

Evolutionarily-transmitted knowledge

Second, we consider situations where the distribution of ban-
dit payout rates remains constant between different episodes.
In this case, the model achieves an average performance of
999.9 £ 0.36 (mean + SEM over models). Figure 2B illus-
trates that the intrinsic motivation system knows which arm
to incentivize from the first step of the episode. This result
highlights that the system is capable of modelling instinctive
responses such as fear and innate attraction using our defini-
tion of intrinsic motivation. In contrast, the e-greedy system
achieves rewards of 532.7 +9.1 (mean + SEM over 100 test
episodes) in this case. The UCB system achieves average re-
wards of 908.2 + 3.2 (mean + SEM over 100 test episodes).
Both are significantly worse than the system with adaptive
intrinsic rewards (one-sample t-test comparing average per-
formance for each of the different model instantiations with
average performance e-greedy: ¢(4) = 1167.4, p=1.6e — 12,
UCB:#(4) =229.1,p=1.1e—9).

Within-lifetime adaptation of exploratory policies

Finally, we show that when given access to extrinsic infor-
mation (i.e., the rewards that were obtained instead of just
action history), the intrinsic motivation supplied by the in-
trinsic learner adapts accordingly. Figure 2C illustrates how
the intrinsic motivation supplied to the extrinsic learner dif-
fers across implementations of the bandit task, where the
arms have a 10%, 20%, and 50% chance of being redrawn
between different trials. This adaptation encourages greater
exploration at levels with higher volatility. At these three
volatility settings, across five model instantiations, our net-
work achieves rewards of 47.0 & 0.5 (mean + SEM over
models), 32.0 = 0.5 (mean = SEM over models), and 12.0 +
0.2 (mean + SEM over models), respectively. While perfor-
mance declines with increased volatility, the decrease is not
as pronounced as for UCB, which records performance drops
to 43.0 + 5.0, 33.0 + 4.0, and 7.8 + 4.0 (mean = SEM over
100 test episodes) for the respective settings. The e-greedy
system exhibits even less adaptability to volatility changes,
with rewards of 20.0 + 5.0, 18.0 == 4.0, and 17.0 &+ 5.0 (mean
4+ SEM over 100 test episodes) for the three volatility lev-
els. Statistical analyses reveal significant differences in per-
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Figure 2: Behaviour of the intrinsic-motivation learning module on variants of the standard 10-armed bandit testbed. A.
Behavior on the stationary 10-armed bandit task. (leff) Learning curves as measured on the training distribution for each
episode over 1000 instantiations for tasks 1 and 3 and 100 for task 2. (middle) Intrinsic motivation attributed to the dominant
arm over the course of the whole experiment as sampled over 1000 instantiations for all tasks. (right) How much the intrinsic
motivation for a given arm is updated after that arm is selected as sampled over 1000 instantiations for all tasks. B. Same as
A, but for the constant 10-armed bandit task in which the distribution of bandits remains the same across different episodes. C
Same as B, but for non-stationary bandit tasks in which the amount of volatility changes between different episodes.

formance adaptation between our model and both the UCB
and e-greedy across volatility settings. For UCB, one-sample
t-tests yield t(4)=7.0, p=0.0011 at 10% volatility, t(4)=-2.0,
p=0.944 at 20% volatility, and t(4)=18.0, p=3.le-5 at 50%
volatility. For e-greedy, the tests yield t(4)=46.0, p=6.8e-7
at 10% volatility, t(4)=23.0, p=9.9e-6 at 20% volatility, and
t(4)=-18.0, p=1.0 at 50% volatility, underscoring our model’s
enhanced capability to modulate exploration in response to
environmental volatility shifts.

Comparing learned intrinsic motivation function with
hand-crafted heuristics The meta-learned intrinsic moti-
vation follows a smooth transition from encouraging explo-
ration to exploitation: After an exploratory period where the
intrinsic motivation is spread across the ten arms, the system
switches to habit-driven learning and stabilizes into having
chosen one particular arm. In contrast, hand-crafted heuris-
tics will continue to favor exploration even when it is no

longer beneficial (Figure 3).

Discussion

RL remains in active use in neuroscience and psychol-
ogy (Hattori et al., 2023), although it is primarily used to
describe learning in controlled experimental conditions over
short time scales (Eckstein, Wilbrecht, & Collins, 2021). Us-
ing reinforcement learning to describe learning in the real
world and over a longer timespan presents significant chal-
lenges. In this paper, we provide a potential solution to one
unresolved piece of the puzzle, by describing a way to model
the origin and development of intrinsic motivation.

Modelling biological learning and behavior with
neural networks

Most learning in RL models takes place across numerous
episodes in a single, well-defined MDP. Newer RL algorithms
have been trained to meta-learn across whole distributions of
MDPs “in weights” (Wang et al., 2016; Duan et al., 2016)

2800



0.8+
0.7 =
0.6=

50.5m

T 0.4

>

5 0.3=
0.2=
0.1=
0.0+

== Adaptive
= UCB

]
20 40 60 80 100
Step

Om

Figure 3: Comparison of (blue) meta-learned intrinsic moti-
vation terms with (green) hand-crafted heuristics on the sta-
tionary ten-armed bandit testbed showing intrinsic motivation
attributed to the dominant arm over the course of the whole
experiment

and thus have the ability to adapt rapidly to each individual
newly-introduced MDP “in context”. However, in both cases,
learning the original algorithm operates over long timescales
and requires much trial and error. These methods are there-
fore ill-suited to represent learning over the course of a single
life, in which episodic resets are impossible. In a single-life
setting, there is a significantly greater tension between the
imperatives to explore and to avoid excessive risks. In the
formulation for robotics used by Chen et al. (2022), the agent
has access to prior data D consisting of transitions from a
source MDP M. ource Which could come, for instance, from
expert trajectories.

In contrast, we model learning as occurring across two dif-
ferent timescales, mirroring the fact that animals both learn
within single lifetimes and benefit from evolutionary adapta-
tion. In our setting, the agent has no such explicit knowledge,
but can instead call upon intrinsic motivation, which benefits
from evolutionary history but may adapt within a single life.
The meta-learned intrinsic motivation needs to guide the ex-
trinsic learner to learn a representation of the value function
in as safe a way as possible, without having access to envi-
ronmental rewards itself. In the volatile environments in task
3, the observation in these simulations does include reward
information, yet this could be replaced by an environmental
change signal, and the task of aiding the extrinsic learner to
build a value function of the environment de novo in each
episode is the same. This task is more difficult than learning
to solve the task directly, and, as reported for learned intrinsic
rewards by Zheng et al. (2020), we would expect a meta-RL
agent trained on the same tasks to outperform our combined
agent. However, combined agents allow us to study the learn-
ing of agents that begin with a naive value function.

In our setting, we maintain the mixing coefficient o be-
tween the extrinsic and intrinsic policy steady at 0.5 over the

whole episode, yet this could be set to decrease over time,
or also be meta-learned, giving an additional degree of free-
dom to the intrinsic motivation system. This process of meta-
learning hyperparameters could be used even when the extrin-
sic learner is itself a neural network or other function approx-
imation algorithm, and be extended to include other kinds of
learning parameters such as the degree of entropy regulariza-
tion, learning rate, and similar. This could provide a princi-
pled way to study the learning of neural networks on different
tasks, without needing to make too many explicit assumptions
about the hyperparameters of the inner learning algorithm.

Intrinsic motivation and reward

We adopt a precise definition of ‘intrinsic motivation’: in-
trinsic motivation is motivation that does not depend on past
rewards received by the agent, although it may depend on
past actions. Over longer timescales, however, it is nonethe-
less ultimately determined by evolutionary pressures. This
definition captures the traditional idea that intrinsic motiva-
tion is motivation that is not derived from rewards (Ryan &
Deci, 2000). As an instance of this idea, we might say that
an animal repeatedly performing an action for which it has
not been rewarded is evidence of intrinsic motivation. This
definition is also consistent with the way that ‘intrinsic moti-
vation’ is used in some reinforcement learning research. For
example, the UCB algorithm for balancing exploitation with
exploration in bandit problems includes terms for extrinsic
motivation, which does depend on past reward, and intrin-
sic motivation, which depends only on the number of times
an action has previously been performed (Sutton & Barto,
2018). Given this definition, intrinsic motivation must have
its source in adaptation across generations, because this is the
only way in which it can be sensitive to the adaptive value of
forms of behaviour.

In its broadest form, this definition is compatible even with
definitions of intrinsic motivation as motivation for open-
ended learning that does not have an explicit goal, such as
novelty search (Stanley & Lehman, 2015; Lehman & Stan-
ley, 2011). For instance, a system could learn to associate
taking novel actions with eventually reaching higher reward
during meta-learning, which would then appear like open-
ended curiosity from the perspective of the single-life extrin-
sic agent. However, to model truly generalizable forms of
these systems, since the meta-learning system is ultimately
also a function approximation, the meta-learning would need
to occur over very broad distributions of tasks. Otherwise,
the meta-learning system will be liable to the same problems
of generalization inherent to neural networks. Given a suf-
ficiently varied training distribution, it would be very inter-
esting to study the kinds of representations that emerge in
the intrinsic motivation system. An alternative approach is
to constrain the system to particular kinds of representations
for specific use cases, for instance using kernel methods for
novelty representations (Becker, Modirshanechi, & Gerstner,
2024).

In this work, we have been focusing specifically on intrin-
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sic motivation, while referring closely to prior work on in-
trinsic rewards. The distinction is that intrinsic motivation
such as a boost given to less-frequently-explored actions is
supplied at the moment of action selection, while intrinsic re-
wards are typically supplied after an action has been taken.
In a model-based setting, this distinction partially collapses,
since the agent can use planning to simulate how much in-
trinsic rewards an action is expected to give before taking it.
In a model-free setting, however, the implementation makes
a difference, since only motivation that has an impact be-
fore an action is taken can stop an agent from taking dan-
gerous actions and guide safe exploration. This is particu-
larly relevant in a single-life setting. Since human learning
is thought to have both model-free and model-based compo-
nents (Gershman, 2017), it makes sense to also consider the
motivation that is useful in this setting.

Another difference is that a learning agent supplied with
intrinsic rewards, in addition to extrinsic rewards, will learn
a single value function or policy that jointly addresses both
sources of rewards. Having a separate system allows for an
interpretable representation, that could be more flexibly mod-
ified in response to environmental changes.

Outstanding conceptual challenges

Our work helps to address one challenge to RL as a model of
biological agency, which is that models must capture the com-
bination of within-lifetime learning and evolutionary adapta-
tion. However, this approach still faces considerable concep-
tual challenges, some of which are related to our work.

One challenge concerns the relationship between rein-
forcement learning agents and biological agents. Barto and
colleagues have argued that, because biological agents do not
receive a reward signal from the environment, they do not
face the problem studied in reinforcement learning research,
and are therefore not correctly thought of as reinforcement
learning agents. Their view is that reinforcement learning
agents exist as homunculi within animal minds, which work
to maximise whatever reward signals they are given by other
parts of the mind (Barto, Singh, & Chentanez, 2004; Singh
et al., 2009; Barto, 2013). This conception is arguably sup-
ported by models like ours in which the extrinsic learner,
which engages in reinforcement learning, is only one part of
the agent. The agent would still require exploration and other
forms of intrinsic motivation in order to drive its learning.
However, the advantages and disadvantages of this concep-
tion have yet to be fully explored. It is also crucial to appre-
ciate that value for biological agents is not wholly subjective,
and that animals themselves do face the problem of learning
from experience to achieve valuable outcomes.

A second challenge is to make sense of reward functions in
biological agents. One issue is that if rewards are constructed
then they are more difficult to disentangle from the agent’s
representation of the value function or policy; this relates to
one possible definition of the reward function, which is as a
description of a signal that acts as an input to reinforcement
learning. Reward functions can also be thought of as opti-

misation targets, but if behaviour is the product of multiple
sources of motivation, there may be no one optimisation tar-
get for behaviour (a related but distinct question is whether
the values of options are represented in a common currency;
Levy & Glimcher, 2012; Spurrett, 2016).

Conclusion

The primary aim of this paper is to show how reinforcement
learning can be used as a model of learning across devel-
opment in a single lifetime. We show that we can model
the adaptation of intrinsic motivation within a lifetime us-
ing a framework with two learners. The adaptive intrinsic
motivation is a signal that allows the reinforcement-learning
mechanism to yield safe exploration policies that lead to ef-
ficient learning. This framework suggests that it is possible
to view biological agents as lifelong reinforcement learners
whose intrinsic motivation depends on their development but
who combine that with within-lifetime learning of extrinsic
rewards. Ultimately, reinforcement learning addresses the
same problem biological agents need to solve, namely learn-
ing how to act in an environment in which actions can have
better or worse consequences. There therefore is good rea-
son to think that reinforcement learning can contribute to the
explanation of lifelong biological learning and behavior.
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